Support of Laurent series algebraic over the field of formal power series
نویسندگان
چکیده
منابع مشابه
ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملalgebraic indepenence of certain formal power series (ii)
we shall extend the results of [5] and prove that if f = z o a x ? z [[x]] is algebraic over q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over q (x) if and only if f , f ,.., f are algebraically independent over q (x)
متن کاملalgebraic independence of certain formal power series (i)
we give a proof of the generalisation of mendes-france and van der poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of carlitz, we shall introduce a class of algebraically independent series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2018
ISSN: 0024-6115
DOI: 10.1112/plms.12188